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This article presents a systematic approach to analysing linear integer multi-objective optimization
problems with uncertainty in the input data. The goal of this approach is to provide decision makers
with meaningful information to facilitate the selection of a solution that meets performance expectations
and is robust to input parameter uncertainty. Standard regularization techniques often deal with global
stability concepts. The concept presented here is based on local quasi-stability and includes a local reg-
ularization technique that may be used to increase the robustness of any given efficient solution or to
transform efficient solutions that are not robust (i.e. unstable), into robust solutions. An application to a
multi-objective problem drawn from the mining industry is also presented.

Keywords: stability analysis; post-optimality analysis; regularization; multi-objective optimization

1. Introduction

In many industries, the drive to improve the performance of process operations has lead to the
integration of formerly independent operations. This integration promises significant increases in
productivity, while reducing costs; however, it often leads to conflicting interests and the need for
multi-objective optimization. For example, in the oil sands industry, the surface mining operation
has become tightly coupled to the downstream extraction process. This coupling places a high
demand on the trucking fleet continuously to deliver high-quality ore from the mine; however, this
is in conflict with the reliability and maintenance cost containment goals for mining equipment.

In this type of environment, decisions must be made contingent upon uncertainties arising
from many causes, such as: measurement errors, incomplete data, subjective information, fast-
changing or time-varying process variables. Full understanding of the impact of these uncertainties
on optimal operating decisions is critical to achieve an effective business. For this reason, tools
are needed to understand the influence of uncertain input data and to mitigate the impact of such

*Corresponding author. Email: fraser.forbes@ualberta.ca

ISSN 0305-215X print/ISSN 1029-0273 online
© 2012 Taylor & Francis
http://dx.doi.org/10.1080/0305215X.2011.646265
http://www.tandfonline.com



1280 B. Seck et al.

uncertainty on the solution. Specifically, decision makers must have answers to the following
questions.

(1) Is the selected efficient solution robust to uncertainty in the input data (i.e. will the efficient
solution remain as such under variation in the input data)?

(2) How robust is the efficient solution (i.e. how much uncertainty can be tolerated without losing
efficiency)?

(3) Which directions of change in the input data are safe (i.e. input data directions that preserve
the efficiency of the solution)?

(4) Which directions of change in the input data increase the robustness of the solution (i.e. could
the efficient solution become more robust if the input data were refined)?

(5) Which input parameters have the largest impact on the problem (i.e. where is the effort best
spent in reducing input data uncertainty)?

Two approaches currently exist in the literature to deal with the effect of input uncertainty:
the stochastic optimization approach and the post-optimality analysis method. In the stochastic
optimization approach, uncertainty is quantified in a probabilistic manner yielding a stochas-
tic optimization problem. Thus, the uncertainty is modelled a priori. Here, the post-optimality
approach, which determines stability information after solving the optimization problem, is used.
Some previously published articles based on this approach are Kozeratskaya et al. (1988, 1993,
2004), Emelichev and Podkopaev (1998) and Emelichev et al. (2002).

The aim of the present post-optimality analysis approach is to help decision makers understand
the impact that uncertainty in the input data has on the efficient solution of integer problems.
This method begins with the decision maker selecting one efficient solution from the Pareto set.
The Pareto set represents the set of solutions where any improvement with respect to one of
the objective functions will worsen at least one of the other objectives. (Different definitions
and formulations of Pareto optimality are proposed in Jahn 2004 and Banke et al. 2008.) The
selected solution is then analysed to determine if it is robust to uncertainty in the input data. If the
solution is robust to uncertainty in the input data, it is classified as quasi-stable and the level of
its robustness is quantified by the local quasi-stability radius. Information about the limiting level
of changes that preserves the efficiency of the solution is derived from this local quasi-stability
radius calculation. If the solution is not robust, it is classified as quasi-unstable and the local
quasi-stability radius is zero. This means that some infinitesimal changes in the input data could
cause the efficient solution to lose efficiency; however, in this case or the case of the stability
radius being too small, the proposed method also provides directional information that can be
used within the proposed regularization technique to increase the quasi-stability radius of the
efficient solution. Therefore, if the decision maker can alter the input data or expects changes in
it to occur in those directions, they can still implement the efficient solution knowing that it will
become more robust in the future.

In contrast to the method proposed here, a global regularization technique that introduces
specific perturbations of the original problem based on the notions of ordering and dual cones
has been developed by several research groups (e.g. Kozeratskaya et al. 1988, 1993, 2004 and
Emelichev et al. 2002). Since their approach is global, their interest lies in the stability of the
entire Pareto set. Thus, the optimization problem is stable if all the efficient points are stable.
Within this approach, to regularize the problem means to transform an unstable problem into a
stable problem. Their definition of the global stability radius is the limiting level of changes to
the input data that does not cause the appearance of new efficient solutions. Therefore, a stable
problem has a global stability radius greater than zero and an unstable problem has a radius of
zero. The latter means that some infinitesimal changes cause an inferior or weakly efficient point
to become efficient. Their method requires the implementation of some specific perturbations of
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the coefficients. Once this is done, the set of weakly efficient points of the transformed problem,
which is part of the set of the efficient solutions of the original problem, becomes stable. Their
technique, although mathematically interesting, does not adequately accommodate the decision
making process for the following reasons.

(a) The global stability radius quantifies the limiting level of changes to the input data that does
not cause new efficient solutions to appear (i.e. it may not quantify the limiting level of
changes that preserves the efficiency of the selected solution).

(b) The stability of the problem is dependent on the input data transformations being realized
(i.e. for the stability information to be useful, the decision maker must actually implement
the deterministic changes, even if they may not be realistic).

(c) Transforming the unstable problem into a stable one may leave out some of the efficient
solutions of the original problem (i.e. a more preferred solution may exist in the original
problem).

(d) The global stability radius is conservative compared to a local stability radius (i.e. usually
more uncertainty can be tolerated by a local solution).

(e) The entire efficient set of the problem must be known prior to applying the regularization
technique (i.e. this method is computationally difficult for large-scale problems).

Recently, a local quasi-stability concept has been introduced by Emelichev et al. (2010), where
uncertainty lies in the criteria space C. Here, the proposed approach considers uncertainty from
(1) the criteria space C and the constraint space (A, b) separately and (2) all the input data (C, A, b)

at the same time. Therefore, this new post-optimality method is superior to previous attempts as it
helps build the decision maker’s insight as to the impact of uncertainty on the efficient solution and
better reflects the actual decision making process. In summary, the main benefits of the present
approach are as follows.

(1) It determines whether the efficient solution is robust to uncertainty in the original input data.
(2) It quantifies the limiting level of changes that preserves the efficiency of the selected solution.
(3) The regularization is easily understood and requires little extra work once the quasi-stability

radius is computed.
(4) It indicates safe directions within the parameter space in which the problem may be varied

(i.e. directions that preserve or increase the efficiency of the solution).
(5) The decision maker has the opportunity to express preferences by choosing an efficient

solution as a starting point of the analysis.

This article is organized as follows. First, the main concepts and definitions related to multi-
objective optimization are presented briefly. Then solution stability is tackled and a new concept
of local-stability radius is introduced; several definitions and results will be presented accordingly.
Later, post-optimality analysis is discussed and a new regularization technique based on the local
stability radius concept is presented. Finally, a case study drawn from the mining industry is used
as an illustration.

2. Multi-objective optimization

The general form of a multi-objective integer linear optimization problem with n decision
variables, m constraints and L objectives is as follows:

max
x

Cx

s.t. Ax ≤ b,
x ∈ Zn,

(1)
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where X
def= {x ∈ Zn : Ax ≤ b} represents the feasible set and C

def= [cij] ∈ RL×n is the coefficient
matrix whose rows are the gradients ci, i = 1, . . . , L, of the ith objective function.

A key difference between single and multi-objective optimization problems is the ordering of
the feasible domain with respect to the objective function(s). In single-objective optimization
problems, full ordering of the feasible domain with respect to the objective function is possible,
which makes identification of an optimal solution straightforward. In multi-objective optimization
problems, with opposing objectives, the ordering is not as simple as in the single-objective case,
since a change that represents an improvement with respect to one of the objective functions will
normally worsen at least one of the other objectives. Thus, optimality is replaced by the notion of
Pareto optimality, or more precisely, the notion of efficiency. Along with the notion of efficiency,
two other variants exist (see Sawaragi et al. 1985): weak efficiency and strict efficiency.

Definition 2.1 Inferior point. A feasible point x0 ∈ X is inferior if it is dominated by another
feasible point, i.e.

∃x ∈ X, ∀i = 1, . . . , L, cix > cix0.

Definition 2.2 Weakly efficient point. A feasible point x0 ∈ X is weakly efficient if it is not
inferior. P(C, X) denotes the set of all weakly efficient points, i.e.

P(C, X)
def= {x0 ∈ X : ∀x �= x0 ∈ X, ∃i0 ∈ {1, . . . , L} ci0 x ≤ ci0 x0}.

Weak efficiency is the most relaxed form of efficiency. Weakly efficient points provide the deci-
sion maker with conflicting information. In the literature other efficiency concepts are introduced
in Sawaragi et al. (1985) and Jahn (2004).

Definition 2.3 Efficient point. An efficient point x0 ∈ X is a weakly efficient point with at least
one objective not being dominated. �(C, X) denotes the set of all efficient points, i.e.

�(C, X)
def= {x0 ∈ P(C, X) : �x �= x0 ∈ X, ∃j0 ∈ {1, . . . , L}, cj0 x ≥ cj0 x0}.

Definition 2.4 Strictly efficient point. A strictly efficient point is a weakly efficient point with at
least one objective dominating. S(C, X) denotes the set of all strictly efficient points, i.e.

S(C, X)
def= {x0 ∈ P(C, X) : ∃k0 ∈ {1, . . . , L}, ck0 x < ck0 x0}.

Strict efficiency is the most restrictive form of efficiency. The set of strictly efficient points is
included in the set of efficient points, which is included in the set of weakly efficient points:

S(C, X) ⊂ �(C, X) ⊂ P(C, X).

To illustrate these ideas, consider the following multi-objective optimization problem:

max
x

[
2 1

−1 1

]
x

s.t.

⎡
⎢⎢⎣

2 1
1 2

−1 0
0 −1

⎤
⎥⎥⎦ x ≤

⎡
⎢⎢⎣

6
6
0
0

⎤
⎥⎥⎦ . (2)

The corresponding feasible domain and the sets of weakly efficient, efficient and strictly efficient
points are illustrated in Figure 1 for both the decision space and the objective space. Since both



Engineering Optimization 1283

x2

x1A(3,0)

B(2,2)

C(0,3)
Efficient/Strictly efficient set

Weakly efficient set

obj1 obj2

c2
c1

O

(a)

z1B(6,0)

A(6,-3)

C(3,3) Efficient/ Strictly efficient set

Weakly efficient set

O

z2

D

(b)

Figure 1. Example describing different types of efficiency: (a) decision space, (b) objective space.

O

C(0,3)

x2

x1

A(3,0)

B(2,2)

c2 c1

E

D

Figure 2. Example describing different types of efficiency in the decision space when all the variables are discrete.

objectives are linear and the decision variable x is continuous, the efficient solutions lie on the
boundary of the feasible domain. For instance, the points lying on the line segments AB and BC
are weakly efficient. Moreover, the line segment BC represents the subset of points that are also
strictly efficient. This is clearly shown in Figure 1(b) where improving the second objective along
AB does not impact the first objective and where improving either objective along BC worsens
the other objective. All the other feasible points, excluding those lying on the line segments AB
or BC are inferior. Point D is an example of an inferior point.

In the same example, but defining x ∈ Zn, in Figure 2 the set of weakly efficient points is
{A, B, C, E} and the set of strictly efficient points is {B, C, E}. The point D is an example of an
inferior point, since it is dominated by point B.

3. Solution stability

Since most practical problems have uncertain input data, a stability analysis of the problem is a very
important part of the decision making process. Therefore, quantifying the stability (robustness)
of an efficient solution with respect to changes in the input parameters is highly desirable. For
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C(0,3)

O

x2

x1

obj1

A(3,0)

B(2,2)

obj2

c2
c1

c1(δ)

Pert obj1

E

D

Figure 3. Quasi-stability with respect to matrix C in the decision space.

O

C(0,3)

x2

x1

obj1

A(3,0)

B(2,2)

obj2

c2 c1

E

D

F

(a)

O

C(0,3)

x2

x1

obj1

A(3,0)

B(2,2)

obj2

c2
c1

E

D

F

(b)

Figure 4. Quasi-stability with respect to the constraints in which: (a) matrix A is perturbed, and (b) vector b is perturbed.

example, it is valuable to know that slightly varying a parameter in one direction may result in the
efficient point becoming inferior in the perturbed problem. As well, it is of equal value to know
that greatly varying a parameter in another direction may result in preserving the efficiency of
the point.

The idea of stability is illustrated in Figures 3 and 4 for the example given in problem (2). For
instance, in Figure 3, point E is strictly efficient and can withstand slight perturbations up to the
first objective passing through C. Therefore E is quasi-stable with respect to the criterion matrix
C and has a quasi-stability radius equal to that amount of change. At this limit, E loses strict
efficiency and becomes weakly efficient instead. If the first objective continues to change past
this limit, E would become inferior to C. A similar analysis can be done for the other objective.
Figures 4(a) and 4(b) illustrate that point E is also quasi-stable with respect to matrix A and
vector b, respectively. This is because the constraint given by the line BC can be rotated and/or
translated outwardly or inwardly slightly before point F becomes either feasible and dominant or
before point E loses feasibility. The quasi-stability radius is again equal to the amount of change
in matrix A or vector b.

For the general linear, integer, multi-objective optimization problem, in order to investigate
stability with respect to perturbations/uncertainty in the input data coefficients C, A and b, the
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perturbed problem has the form:

max
x

C(δ)x

s.t. A(δ)x ≤ b(δ),
x ∈ Zn.

(3)

For the sake of simplicity, only additive perturbations are considered: C(δ)
def= C + C′, A(δ)

def=
A + A′ and b(δ)

def= b + b′, where C′, A′ and b′ are the matrices and the vector of perturbations.
More general perturbations could be considered by making use of norms in function spaces to
deal with the local quasi-stability radius.

The literature on stability and regulation of multi-objective integer linear programs often uses
a global quasi-stability concept (Emelichev et al. 2002). In that case the stability is studied with
respect to all the strictly efficient solutions of the problem and the following global definition
must be used.

Definition 3.1 Global quasi-stability. The original integer problem (C, A, b) is quasi-stable if
∃δ0 > 0, such that ∀δ ∈ (0, δ0), ∀C′ : ‖C′‖p < δ, ∀A′ : ‖A′‖p < δ, ∀b′ : ‖b′‖p < δ then

S(C, X) ⊂ S(C + C′, X + X′)

where 1 ≤ p ≤ +∞ and X + X′ def= {x ∈ Zn|(A + A′)x ≤ b + b′}.
In practice, once a solution is given, the goal is to investigate its robustness with respect to

the perturbations. Therefore, a local stability concept specific to each solution is introduced. The
proposed definition is the following.

Definition 3.2 Local quasi-stability. A strictly efficient point x0 of the problem (C, A, b) is quasi-
stable if ∃δ0 > 0, such that ∀δ ∈ (0, δ0), ∀C′ : ‖C′‖p < δ, ∀A′ : ‖A′‖p < δ, ∀b′ : ‖b′‖p < δ the
point is also strictly efficient for the perturbed problem (C + C′, A + A′, b + b′).

To illustrate the concept of stability, the uncertainty is assumed to lie only in the input matrix
C and the following problem is considered:

max
x

C(δ)x

s.t. Ax ≤ b,
x ∈ Zn.

(4)

In this case, the distance between problem (1) and (4) is defined as the distance between the
original matrix C and the perturbed one C(δ). Now, the aim is to measure this distance such
that the efficiency of a specific solution will be preserved. In other words, the limiting level of
perturbations, such that the efficiency of the solution will be maintained, has to be quantified.

If x0 is a strictly efficient solution, then this means that at least in one direction x0 cannot be
improved. Therefore, there exists an i0 such that ci0(x − x0) < 0, where x is an alternative feasible
point. If efficiency is to be preserved, then the same property would have to be satisfied by the
perturbed problem, namely ci0(δ)(x − x0) < 0. Therefore, the stability region of x0 with respect
to objective i0 is the set defined as follows:

Si0(x0)
def=

{
δ > 0, ∀x ∈ X,

{
ci0(δ)(x − x0) < 0,

ci0(x − x0) < 0.

}
. (5)

Outside this stability region, x dominates x0 in direction i0.
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Since ci(δ) = ci + c′
i, if the stability region on a plot with the axes of coordinates c ′

ij were
represented, a stability region of a very irregular shape would be obtained. To make this stability
information usable in practice, a way of measuring/approximating this stability region must be
found, even though it may lead to losing information. This measure is given by the quasi-stability
radius. The exact way this is done is presented in the next subsection.

3.1. Local quasi-stability radius

The quasi-stability radius quantifies the limiting level of perturbations of the coefficients C, A and
b such that the efficiency of the solution is preserved. The formal definition is given below.

Definition 3.3 Local quasi-stability radius. The local quasi-stability radius of a strictly efficient
solution x0 of the problem (1) is the minimum of the distances from this problem to problem (4)
for which x0 is no longer strictly efficient:

Rq(C, x0)
def= min

δ>0
dist((1), (4)) such that x0 �∈ S(C(δ), X)

def= max
1≤i≤L

‖ci(δ) − ci‖p,

s.t. ∀i = 1, . . . , L, ∃x �= x0 ∈ X, ci(δ)(x − x0) ≥ 0, (6)

where ‖ · ‖p stands for the p-norm on Rn such that 1 ≤ p ≤ +∞ and p−1 + q−1 = 1.

The above definition of local quasi-stability radius has a global equivalent.

Definition 3.4 Global quasi-stability radius. The global quasi-stability radius of the original
problem is the minimum of the distances between the original and the perturbed problem that
preserves the entire strictly efficient set.

In the same fashion, the perturbed problem and the corresponding definitions can be modified
for cases where the uncertainty lies only in A or b, or any combination thereof.

3.2. Local quasi-stability radius (input matrix C)

The goal of this section is to provide the decision maker with stability information about the
selected efficient solution with respect to uncertainty in the input matrix C. This stability infor-
mation can be captured by the local quasi-stability radius Rq (C, x0) (see Definition 3.3). If only
perturbations with respect to the cost matrix are considered, the distance between problem (1)
and the perturbed one (4) can be defined as: max1≤i≤L ‖ci(δ) − ci‖p.

The following theorem gives the formula of the local quasi-stability radius with respect to
matrix C for an efficient solution x0.

Theorem 3.5 Let x0 be a strictly efficient solution of problem (1) and 1 ≤ p ≤ +∞. Then, if only
additive perturbations with respect to the cost matrix are considered, the quasi-stability radius
on x0 is given by

Rq(C, x0) = min
x�=x0

Ax≤b

max
1≤i≤L

ci(x−x0)<0

|ci(x − x0)|
‖x − x0‖q

, (7)

where p−1 + q−1 = 1.
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Proof A variant of this proof can be found in Emelichev and Podkopaev (1998), which focuses
on the global quasi-stability radius. The proof is focused on the local quasi-stability radius and is
generalized with respect to the choice of the norms.

Let x0 be a strictly efficient solution of the original problem (1). According to Definition 2.4:

∀x �= x0 ∈ X, ∃i0 = 1, . . . , L, ci0(x − x0) < 0. (8)

Looking for the local quasi-stability radius on x0Rq (C, x0), to minimize the distance between
problem (1) and problem (4) such that x0 is not a strictly efficient point for the perturbed problem:

Rq(C, x0)
def= min

δ>0
dist((1), (4)) such that x0 �∈ S(C(δ), X)

def= max
1≤i≤L

‖ci(δ) − ci‖p,

s.t. ∃x �= x0 ∈ X, ∀i = 1, . . . , L, ci(δ)(x − x0) ≥ 0. (9)

Looking only at additive perturbations, ci(δ) = ci + c′
i and the main objective of the optimiza-

tion problem (9) can be stated as follows:

dist((1), (4))
def= max

1≤i≤L
‖ci(δ) − ci‖p = max

1≤i≤L
‖c′

i‖p,

where δ
def= max1≤i≤L ‖c′

i‖p. A real number δ satisfying the constraints of problem (9) will be such
that ∃x �= x0, ∀i = 1, . . . , L, such that

(ci + c′
i)(x − x0) ≥ 0

=⇒ c′
i(x − x0) ≥ −ci(x − x0)

=⇒ |c′
i(x − x0)| ≥ −ci(x − x0).

By the Hölder inequality, (|h(x − x0)| ≤ ‖h‖p‖x − x0‖q, where p, q > 0 and p−1 + q−1 = 1 (p, q
are complementary to each other and ‖ · ‖p stands for the p-norm)):

‖c′
i‖p‖x − x0‖q ≥ −ci(x − x0)

=⇒ ‖c′
i‖p ≥ −ci(x − x0)

‖x − x0‖q
,

passing to the maximum through all i = 1, . . . , L:

max
1≤i≤L

‖c′
i‖p ≥ max

1≤i≤L
−ci(x − x0)

‖x − x0‖q
.

As there exists an i0 such that ci0(x − x0) < 0, then the maximum over all i = 1, . . . , L such that
ci(x − x0) < 0 (the focus is only on preserving efficiency with respect to at least one objective)
can be considered. Then:

δ = max
1≤i≤L

‖c′
i‖p ≥ max

1≤i≤L
ci(x−x0)<0

|ci(x − x0)|
‖x − x0‖q

> 0.

This property is available for all feasible points x �= x0 ∈ X. Thus,

δ ≥ min
x�=x0

Ax≤b

max
1≤i≤L

ci(x−x0)<0

|ci(x − x0)|
‖x − x0‖q

> 0,

δ is bounded from below and reaches its boundary (as it is positive). Definition 3.3 of the local
quasi-stability radius conclude the proof. �
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Table 1. The stability radius and allowed perturbations (lightly shaded area – stability region; darkly shaded area –
approximation of the stability region determined with the help of the stability radius).

‖x − x0‖q = maxk=1,...,n |xk − x0k |
p = 1

∑n
k=1 |cik(δ) − cik | < Rq(C, x0)

q = ∞ The entries of every row (i = 1, . . . , L) can be perturbed such that
the sum of the absolute values of the perturbations in every row
are less than the quasi-stability radius.

c’i2

c’i1

‖x − x0‖q = ∑n
k=1 |xk − x0k |

p = ∞ maxk=1,...,n |cik(δ) − cik | < Rq(C, x0)

q = 1 The entries of every row (i = 1, . . . , L) can be perturbed such that
|cik(δ) − cik | < Rq. The absolute value of the perturbations of
every element of the matrix C are less than the quasi-stability
radius.

c’i2

c’i1

‖x − x0‖q = (
∑n

k=1 |xk − x0k |2)1/2

p = 2 (
∑n

k=1 |cik(δ) − cik |2)1/2 < Rq(C, x0)

q = 2 The entries of every row (i = 1, . . . , L) can be perturbed such that
the square root of the sum of the squares of the perturbations in
every row is less than the quasi-stability radius.

c’i2

c’i1

At the beginning of this section, it was stated that the stability space of an efficient solution
has a very irregular shape and that an easily computable measure must be found. Depending
on the choice of the p-norms, the quasi-stability radius provides alternative approximations to
the quasi-stability region. Therefore, the quasi-stability radius can be considered to be a form of
the required measure. The different approximations of the quasi-stability space corresponding to
three choices of norms and the stability radii calculations based on these norms are summarized
in Table 1.

Using norms to specify the approximation to the quasi-stability space has two important con-
sequences. First, the norm definitions impact the information provided by the calculation to the
decision maker. For instance, in Figure 5(a) each norm definition identifies the same limiting per-
turbation, but in Figure 5(b) the limiting perturbation is a function of the norm used. Secondly, the
quasi-stability radius only quantifies the true quasi-stability of the efficient solution in exactly one
direction. In every other direction the limiting perturbations are either exactly equal to or greater



Engineering Optimization 1289

C’i2
C’i2

C’i1C’i1

(a) (b)

Figure 5. The impact of the choice of norms used for the computation of the quasi-stability radius on the information
provided to the decision maker.

(a) (b)C’i2 C’i2

C’i1 C’i1+1

Figure 6. Increasing the quasi-stability radius from 1 to 2 by strategically modifying the input parameter c21. (a) The
sensitive direction. (b) Modifying the coefficient in the opposite direction.

than the quasi-stability radius. Thus, opportunities exist to increase the quasi-stability radius by
strategically modifying the input matrix C as illustrated in Figure 6.

Summary 3.6 The information provided by the quasi-stability radius with respect to the matrix
C can be summarized as follows.

(1) If x0 is a strictly efficient solution and the perturbations to the input matrix C = [ci] are less
than the quasi-stability radius for those rows i for which ci(x − x0) ≤ 0, x0 remains strictly
efficient for the perturbed problem; the entries of the other rows are free, in the sense that
they can be perturbed indefinitely.

(2) If all the objective vectors ci for which ci(x − x0) ≤ 0 are perturbed slightly beyond the
quasi-stability radius, x0 becomes inferior for the perturbed problem.

Remark 1 The stability radius formula given by (7) can be easily generalized (see Appendix A).

Remark 2 Similar local quasi-stability radii can be computed when perturbations with respect
to the input matrix A and vector b are used (see Appendix B) and with respect all entries C, A and
b (see Appendix C).

Remark 3 In this article, the terms local quasi-stability radius and quasi-stability radius with
respect to the efficient point x0 have the same meaning.

3.3. Scaling issues

In the previous definitions, the quasi-stability radius quantified the absolute magnitude of the
limiting level of perturbations such that the efficiency and feasibility of the solution are preserved.
In practice, this can become problematic for two main reasons:

• parameters may have different units or vastly different orders of magnitude (i.e. the quasi-
stability radius relative to each parameter is very different),
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• some parameters may have higher uncertainty or change more quickly than others (i.e. decision
makers want to select solutions that are more robust with respect to these parameters).

For instance, to deal with these practical issues, the objective vector ci = (ci1, . . . , cin) can be
scaled by c̃i, where c̃i can be the 1-norm, the 2-norm, the ∞-norm, the average of ci or any

other positive scaling factor. The vector c̄i
def= ci/c̃i must then replace ci in formula (7). After

computing the quasi-stability radius, it is useful to return to the original variables. If the scaled

quasi-stability radius is R̄q
s (C, x0)

def= Rq(C, x0)|ci=c̄i , then the dimensioned quasi-stability radii

are (Rq
s )

i(C, x0)
def= R̄q

s (C, x0)|ci=ci c̃i , for i = 1, . . . , L. This means that the allowable perturbations,
which preserve the efficiency of the original efficient point x0, are ‖ci − ci(δ)‖p < (Rq

s )
i.

It is also important to incorporate the impact of the uncertainty in the calculations. For instance,
to emphasize the importance of an uncertain objective/constraint, that objective/constraint in the
stability radius calculation must be weighted by a factor less than one. For example, to emphasize
one objective, denoted cl, since its rate of change is wl times slower than the rate of the change
of the other objectives, then the objective cl must be replaced by c̄l = clwl. This can also be done
with constraints and has similar consequences as scaling. Notice that this type of transformation
does not modify the optimization problem (1), but does alter the dimensionless quasi-stability
radius to encourage the selection of a solution that is more stable with respect to the emphasized
objective/constraint. These issues will be investigated in an upcoming article (Seck et al. 2012).

4. Local quasi-stability radius and post-optimal analysis

4.1. Sensitive directions

So far, the quasi-stability radius has only been used to quantify the limiting level of perturbations
such that the efficiency and feasibility of the solution are preserved; however, even more infor-
mation can be extracted from the quasi-stability radius calculation. Specifically, the calculation
provides directional information that can be used to strategically perturb the input data coefficients
C, A and b to increase the quasi-stability radius.

In this section, all the perturbations are assumed to be additive with respect to the cost matrix.
Therefore, the perturbed problem (4) is considered.

Recall from Section 3.2 that a direct consequence of the norm definitions is that the local
quasi-stability radius only quantifies the true quasi-stability of a strictly efficient solution x0 in
exactly one direction. Imagine that the approximation of the stability region, computed using the
quasi-stability radius, touches the boundary of the original, irregular stability region at the point
x̂ (i.e. x̂ is the attained minimum value of problem 9):

x̂ ∈ arg min
δ>0

max
1≤i≤L

‖ci(δ) − ci‖p,

s.t. ∃x �= x0, ∀i = 1, . . . , L, ci(δ)(x − x0) ≥ 0. (10)

This point of contact is the optimal solution of the target quasi-stability radius equation.Assume
that the optimal value is reached for i0 = l. This means that the scaled quasi-stability radius is

Rq
s (C, x0) = |cl(x̂ − x0)|

‖x̂ − x0‖q
. (11)

The following notations are used:

(Rq
s )

l
i

def= |ci(x̂ − x0)|
‖x̂ − x0‖q

, i = 1, . . . , L, if ci(x̂ − x0) < 0, (12)
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d
def= sign(x̂ − x0). (13)

Note that (Rq
s )

l
l = Rq

s (C, x0).
The vector d provides the sensitive direction when dealing with perturbations with respect to

the input matrix C.

Remark 4 If stability with respect to A and b is considered, the sign of the vector d is changed;

therefore, in what follows, d
def= sign(x0 − x̂).

As stated previously, the sensitive direction is the most important direction, since the quasi-
stability radius only quantifies the true quasi-stability of an efficient solution x0 in this direction.
With this in mind, minimum perturbations with respect to C are presented so that a progression
from the strictly efficient case to the inferior case is obtained. This is illustrated by the following
propositions.

Proposition 4.1 Assume that all the objective vectors ci for which ci(x̂ − x0) ≤ 0 are perturbed
and the perturbations are less (with respect to the p-norm) than the quasi-stability radius. Then
x0 remains strictly efficient for the perturbed problem.

Proof All the objective vectors ci for which ci(x̂ − x0) ≤ 0 are perturbed and the perturbations
are less than the quasi-stability radius. This means that ‖ci(δ) − ci‖p < Rq(C, x0) for all i =
1, . . . , L such that ci(x̂ − x0) ≤ 0

‖ci(δ) − ci‖p < Rq(C, x0)
def= (Rq

s )
l
l(C, x0) = |cl(x̂ − x0)|

‖x̂ − x0‖q
.

By (10), ∃x �= x0,

‖ci(δ) − ci‖p < Rq(C, x0) = (Rq
s )

l
l(C, x0) = |cl(x̂ − x0)|

‖x̂ − x0‖q
≤ |cl(x − x0)|

‖x − x0‖q
,

=⇒ ‖ci(δ) − ci‖p‖x − x0‖q < |cl(x − x0)|,
=⇒ |(ci(δ) − ci)(x − x0)| < |cl(x − x0)| (by the Hölder inequality).

This is true for all i = 1, . . . , L. Then:∣∣∣∣∣∣cl(δ)(x − x0) − cl(x − x0)︸ ︷︷ ︸
<0

∣∣∣∣∣∣ < |cl(x − x0)| .

Then, by the strict efficiency of x0 with respect to the original problem:

cl(δ)(x − x0) < 0.

Therefore x0 is strictly efficient for the perturbed problem. �

Proposition 4.2 Assume that all the objective vectors ci are perturbed in the sensitive direction
and ci(x̂ − x0) ≤ 0 for all i = 1, . . . , L. Also assume that the perturbations are equal to the quasi-
stability radius. Then both x0 and x̂ become efficient but not strictly efficient for the perturbed
problem.

Proof (1) To prove that x0 is efficient for the perturbed problem, proof by contradiction is used.
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Assume that ∃x′ �= x0 ∈ X such that cl(δ)(x′ − x0) ≥ 0. Then, by the fact that the
perturbations are equal to the quasi-stability radius and by (10):

‖cl(δ) − cl‖p = Rq(C, x0) = (Rq
s )

l
l(C, x0) = |cl(x̂ − x0)|

‖x̂ − x0‖q
≤ |cl(x′ − x0)|

‖x′ − x0‖q
,

=⇒ ‖cl(δ) − cl‖p‖x′ − x0‖q ≤ |cl(x′ − x0)|,
=⇒ |(cl(δ) − cl)(x′ − x0)| ≤ |cl(x′ − x0)|,
=⇒ | cl(δ)(x′ − x0)︸ ︷︷ ︸

≥0

− cl(x′ − x0)︸ ︷︷ ︸
<0

| ≤ |cl(x′ − x0)|.

By the strict efficiency of x0 with respect to the original problem, the inconsistency of the last
inequality is reached.

Now, x0 ∈ �(C(δ), X).
(2) To prove that x0 is not strictly efficient for the perturbed problem, all of the objective vectors

ci are perturbed in the sensitive direction, this means that

ci1(δ) = ci1 + sign(x̂1 − (x0)1)δ1

...

cin(δ) = cin + sign(x̂1 − (x0)1)δn,

(14)

where δi ≥ 0 for all i = 1, . . . , L.Also, |δl| = (Rq
s )

l
l and for all i = 1, . . . , L, i �= l, |δi| = (Rq

s )
l
i.∀i = 1, . . . , L:

‖ci(δ) − ci‖p = (Rq
s )

l
i(C, x0) = |ci(x̂ − x0)|

‖x̂ − x0‖q
,

=⇒ ci(δ)(x̂ − x0) − ci(x̂ − x0)︸ ︷︷ ︸
≥0

= −ci(x̂ − x0)︸ ︷︷ ︸
≥0

,

=⇒ ci(δ)(x̂ − x0) ≥ 0.

Then, x0 �∈ S(C(δ), X).
(3) To prove that x̂ is efficient for the perturbed problem, proof by contradiction is used.

Assume that ∃x′ �= x̂ ∈ X such that

cl(δ)(x′ − x̂) ≥ 0. (15)

Then,

cl(δ)(x′ − x0) + cl(δ)(x0 − x̂) ≥ 0.

x0 is efficient for the perturbed problem. Then,

cl(δ)(x′ − x0) ≤ 0 =⇒ cl(δ)(x0 − x̂) ≥ 0.

By (10), cl(δ)(x̂ − x0) ≥ 0 which means that cl(δ)(x0 − x̂) = 0. x0 is strictly efficient for the
original problem. Therefore, the equality (15) is false. Then x̂ ∈ �(C(δ), X).

(4) The proof of the non-strict efficiency of x̂ is straightforward. In fact, in (2):

ci(δ)(x̂ − x0) ≥ 0

is already proved. Then, x̂ /∈ S(C(δ), X). �
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Proposition 4.3 Assume that ci(x̂ − x0) ≤ 0 for all i = 1, . . . , L and that all the objective vectors
ci are perturbed in the sensitive direction and the perturbations are equal to the quasi-stability
radius, except for at least one objective vector, ck , which is perturbed slightly beyond the quasi-
stability radius. Then x0 becomes weakly efficient but not efficient for the perturbed problem and
x̂ becomes efficient in its place.

Proof

(1) The weak efficiency of x0 is straightforward.
(2) Proof by contradiction is used to prove that x0 is not efficient for the perturbed problem.

Assume that x0 is efficient for the perturbed problem. Then, �x �= x0 ∈ X, ∃i0 ∈
{1, . . . , L}, ci0(δ)x ≥ ci0(δ)x0.
• If i0 �= k, then ck(δ)(x̂ − x0) = 0, which is inconsistent.
• If i0 = k, then

�x �= x0 ∈ X, ck(δ)(x − x0) ≥ 0,

=⇒ ck(δ)(x̂ − x0) < 0,

=⇒ (ck(δ) − ck)(x̂ − x0) < −ck(x̂ − x0).

All the perturbations are made in the sensitive direction. Then:

‖ck(δ) − ck‖p < (Rq
s )

l
k ,

which is in contradiction with the assumption.
(3) Again, proof by contradiction is used to prove that x̂ is efficient.

Assume that ∃x′ �= x̂ ∈ X such that ck(δ)(x′ − x̂) ≥ 0. Then,

ck(δ)(x′ − x0) + ck(δ)(x0 − x̂) ≥ 0.

x0 is not efficient for the perturbed problem. Then,

ck(δ)(x′ − x0) ≤ 0 =⇒ ck(δ)(x0 − x̂) ≥ 0.

The last inequality is contradictory. Then x̂ ∈ �(C(δ), X). �

Remark 5 Use the same assumption as in Proposition 4.3 and consider that, for at least one i,
ci(x̂ − x0) > 0. In that case only the entries of the row k for which ck(x̂ − x0) ≤ 0 are perturbed
and the perturbations are equal to the quasi-stability radius. This means ‖ck(δ) − ck‖ = (Rq

s )
l
k for

all k for which ck(x̂ − x0) ≤ 0. Then x0 becomes weakly efficient for the perturbed problem and
x̂ becomes efficient in its place.

Corollary 4.4 Assume that all the objective vectors ci are perturbed slightly beyond the quasi-
stability radius in the sensitive direction. Then x0 becomes inferior for the perturbed problem and
x̂ becomes strictly efficient in its place.

Sketch of proof The proof follows the same principle as in the preceding propositions.Assuming
that all the objective vectors ci are perturbed slightly beyond the quasi-stability radius in the
sensitive direction means that for all i = 1, . . . , L, for which ci(x̂ − x0) ≤ 0, ‖ci(δ) − ci‖p >

(Rq
s )

l
i. Then, C(δ)x̂ > C(δ)x0. �

With the information presented above, the Summary 3.6 can be refined. The summary is intro-
duced as a quick reference to the four points described above. All the details and assumptions
made above are omitted for the sake of clarity.
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Summary 4.5

(1) If x0 is a strictly efficient solution and the perturbations to the input matrix C are less than
the quasi-stability radius, x0 remains strictly efficient for the perturbed problem.

(2) If all the objective vectors ci are perturbed and the perturbations are equal to the quasi-
stability radius, x0 becomes efficient but not strictly efficient for the perturbed problem
(Rq(C(δ), x0) = 0).

(3) If all the objective vectors ci are perturbed and the perturbations are equal to the quasi-
stability radius, except for at least one objective vector that is perturbed slightly beyond the
quasi-stability radius, x0 becomes weakly efficient for the perturbed problem.

(4) If all the objective vectors ci are perturbed slightly beyond the quasi-stability radius, x0

becomes inferior for the perturbed problem.

The Summary 4.5 shows that the transition from strictly efficient points to inferior points hap-
pens smoothly, in the same fashion in which the transition from optimality to inferiority goes
through the alternative optima in the scalar optimization case. Summary 4.5 considers perturba-
tions of the C matrix. Perturbations in the elements of A and b affect the feasibility of different
points. For example, perturbing A and b in such a way that the feasible domain shrinks can cause
the feasible strictly efficient point x0 to end up on the boundary of the new feasible domain (its
new slack is 0, therefore one of the new constraints is binding). If the perturbation is increased,
x0 may become infeasible. On the other hand, if A and b are perturbed in such a way that the
feasible domain expands, then new points may become feasible and may dominate the original
strictly efficient point x0. Therefore, the change of the strictly efficiency status, in this case, is just
a consequence of the change in the number of feasible points.

4.2. Regularization

Finding the sensitive direction is particularly useful since any perturbation in the input data triplet
C, A and b in the opposite direction of the sensitive one increases the stability radius/region as
shown in Figure 6. This can constitute an approach to the regularization technique. One of the
strengths of this regularization is that it can be applied in a step-wise fashion; this can be as simple
as perturbing only one coefficient in the opposite direction as d. This allows the decision maker
easily to understand the impact that the perturbation had on the stability radius as well as applying
the perturbations in a preferred order. Such a sequential regularization approach can continue until
the decision maker is comfortable working with the solution. The decision maker should note that
the increase in the quasi-stability radius is always less than or equal to the strategic perturbation.

This regularization technique is useful to decision makers for several reasons:

• it is intuitive and uses only the information provided by the quasi-stability radius calculation,
• it allows the quasi-stability radius of quasi-stable solutions to be increased,
• it allows the quasi-unstable solutions to be transformed into quasi-stable solutions,
• it allows the justification of selecting a solution with an inadequate quasi-stability radius when

expecting perturbations in the data triplet C, A and b to occur in the future,
• it allows a complex problem to be investigated and to determine what factors limit the problem’s

robustness.

4.3. Uncertainty analysis algorithm

The preceding results are used here to formulate a systematic approach to analysing linear integer
single or multi-objective optimization problems with uncertainty in the input data triplet C, A and
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INPUT
problem formulation
data triplet C, A, b
parameter uncertainty
expected parameter
changes
weighting vectors
scaling method

Primary Step:  SOLVE
search for a preferred solution with an 
adequate quasi-stability radius

Interactive User Interface
adjust preference levels
view solution and radius

Solver
find q-s radius

Automatic check
validate radius against
uncertainty and/or
expected changes

STOP

START

CONTINUE

Problem Solver
find solution x̂ inadequate
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Auxiliary Step:  REGULARIZATION
if necessary, search solution history and 
regularize the preferred solution

Interactive User Interface
adjust preference levels
view solution and radius

Regularization
identify required
changes to C, A, b

Automatic check
validate against
uncertainty and/or
expected changes

STOP

START

unrealistic
perturbations

Solution History
find solution 
find radius

x̂

Figure 7. The systematic decision making algorithm.

b. The algorithm is presented in Figure 7 and incorporates methodologies to search for preferred
solutions, to quantify their robustness and, if necessary, to increase robustness.

Specifically, the algorithm details the following.

(1) The formulation of the multi-objective linear integer optimization problem. Input the data
triplet C, A and b, the associated uncertainty and expected future changes. As well, the
decision maker must enter the required scaling method and the weighting vectors to emphasize
or de-emphasize objectives and constraints.

(2) Soliciting the correct solution preferences from the decision maker.
(3) Solving the optimization problem for an efficient solution x0.
(4) Calculating the quasi-stability radius of x0.
(5) Validating the quasi-stability radius against the input data uncertainty and expected future

changes. If the radius accommodates the uncertainty and the expected changes have a positive
impact, the results are presented to the user, who has the choice to continue the search or stop.
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If the radius is inadequate, the results are recorded and steps (3) to (5) are repeated with the
next most preferred solution. If this process fails to find a satisfactory x0, the regularization
technique is initiated.

(6) The regularization technique begins with selecting the most preferred solution from the
recorded solution history. This is followed by calculating the perturbations required to make
the selected solution quasi-stable enough to accommodate the input uncertainty. If the changes
are realistic and can be implemented, the process stops, or else this step is repeated.

If the algorithm fails to reveal a satisfactory solution that accommodates the input uncertainty, the
user should focus on reducing the highest levels of uncertainty before restarting the algorithm.

5. Case studies: the truck allocation problem

In this example, the problem is defined first, and then the set of efficient points and the respective
quasi-stability radii are computed. For a selected strictly efficient point the sensitive directions are
computed and, based on this information, the effect of different types of perturbation is analysed.
The numerical results are in agreement with Summary 4.5 presented in Section 4.1. The proposed
regularization technique, based on the computation of the sensitive direction, is also illustrated. In
the numerical example, it is used to increase the quasi-stability radius of an already quasi-stable
point. For this problem, the impact of uncertainty in one objective over the other is emphasized
to demonstrate how this influences the decision makers’ choice of efficient solutions.

This problem consists of three integer decision variables, three box constraints, one linear
inequality constraint and two objective functions. The variables x1, x2 and x3 denote the number
of 360, 600, 900 tonne trucks working during the shift, respectively. The objective functions and
the constraints are:

min
x

{x1 + x2 + x3} number of trucks,

min
x

{100x1 + 200x2 + 350x3} operating cost (dollars per hour),

3100 ≤ 360x1 + 600x2 + 900x3 ≤ 6180 ore production (tonnes per hour),

0 ≤ x1 ≤ 3, (16)

0 ≤ x2 ≤ 4,

0 ≤ x3 ≤ 3.

Or

max
x

Cx

s.t. Ax ≤ b, (17)

x ≥ 0, x ∈ Zn,

where

C =
[ −1 −1 −1
−100 −200 −350

]
, A =

⎡
⎢⎢⎢⎢⎣

−360 −600 −900
360 600 900

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎦ , b =

⎡
⎢⎢⎢⎢⎣

−3100
6180

3
4
3

⎤
⎥⎥⎥⎥⎦ . (18)
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Table 2. Strictly efficient, efficient and weakly efficient solutions.

S(C, X) �(C, X) \ S(C, X) P(C, X) \ �(C, X)

(0,1,3), (2,1,2), (2,4,0) N/A (2,0,3), (1,2,2), (0,4,1), (3,2,1)

Table 2 presents the solutions of the problem: three strictly efficient points and four weakly
efficient points. Thirty-three points are inferior.

First, the strictly efficient point x0 = (2, 1, 2) will be analysed. Since the coefficients of the
two objective functions differ by two orders of magnitude, the objectives must be scaled. The
average value of each of the objective function coefficients was chosen for scaling. Therefore,
using c̃i = ∑N

j=1 |cij|/N , i = 1, . . . , L, to scale the objective coefficients gives c̄1 = (−1, −1, −1)

and c̄2 = (−0.46, −0.92, −1.62).
Calculating the quasi-stability radius with respect to criterion matrix C̄ using p = ∞, q = 1

(see Table 1) gives

R̄q
s (C̄, x0) = 0.0384,

where x̂ = (0, 4, 1) is the feasible point that becomes dominant to x0 (see formula 11). The stability
radius is limited by objective 2, therefore

(R̄q
s )(C̄, x0) = −c̄2(x̂ − x0)

‖x̂ − x0‖1
= (R̄q

s )
2
2,

(R̄q
s )

2
1 = −c̄1(x̂ − x0)

‖x̂ − x0‖1
= 0,

(Rq
s )

1 = (R̄q
s ) ∗ c̃1 = 1

26
= 0.0384,

(Rq
s )

2 = (R̄q
s ) ∗ c̃2 = 325

39
= 8.33,

x̂ − x0 = (−2, 3, −1).

Table 3 is a summary of the possible perturbations to the original problem.
Now, suppose that the decision maker knows that the uncertainty in the second objective is ten

times smaller than the uncertainty of the first objective. To take this information into account, the

Table 3. Effect of different types of perturbation.

Status of x0 Conditions Perturbations (ci(δ) = ci − δi)

x0 ∈ S(C(δ), X) |c1k(δ) − c1k | < (Rq
s )

1 δ1 : (−0.03, 0.03, −0.03)

|c2k(δ) − c2k | < (Rq
s )

2 δ2 : (−8, 8, −8)

x0 ∈ �(C(δ), X) |c1k(δ) − c1k | = (Rq
s )

1 δ1 : (0, 0, 0)

δ2 : (−8.3, 8.3, −8.3)

x0 ∈ P(C(δ), X) |c1k(δ) − c1k | > (Rq
s )

1 δ1 : (0, 0, 0)

δ2 : (−8.5, 8.5, −8.5)

x0 /∈ P(C(δ), X) |c1k(δ) − c1k | > (Rq
s )

1
1 δ1 : (−0.01, 0.01, −0.01)

x̂ = (0, 4, 1) |c2k(δ) − c2k | > (Rq
s )

1
2 δ2 : (−8.5, 8.5, −8.5)

∈ S(C(δ), X)

Regularization |c1k(δ) − c1k | < (Rq
s )

1 ci(δ) = ci − δi
of x0 ∈ S(C(δ), X) |c2k(δ) − c2k | < (Rq

s )
2 δ1 : (0, 0, 0)

Opposite direction to δ2 : (5, 0, 0)

sensitive one R̄q
s (C(δ), x0) = 0.0465 > 0.038
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Table 4. Robustness of the strictly efficient solutions with and without accounting
for the varying degrees of uncertainty in the objectives.

No uncertainty With uncertainty
Strictly efficient
point (Rq

s )
1 (Rq

s )
2 (Rq

s )
1 (Rq

s )
2

(2,1,2) 0.038 8.3 0.2 N/A
(0,1,3) 0.2 N/A 0.2 N/A
(2,4,0) 0.058 12.5 0.577 12.5

impact of the second objective on the stability radius calculation is de-emphasized by using c̄2
∗ =

10c̄2. This yields c̄1 = (−1, −1, −1) and c̄∗
2 = (−4.6, −9.2, −16.2). The dimensioned stability

radii, with and without taking the uncertainty into account, are shown for all the strictly efficient
points in Table 4. Notice that even when the uncertainty of the second objective is not accounted,
the scaled variables are considered. Therefore, to return to the original variables, two different
stability radii are obtained, one for each objective function. The cases marked as N/A in Table 4
occur when ci(x − x0) > 0. Here it can be seen that the most robust solution is x0 = (2, 4, 0)

before and after accounting for the uncertainty of the first objective; however, the decision maker
may have higher uncertainty in the coefficients of the first objective function than the allowable
value of 0.058. If the uncertainty of the first objective had not been accounted for, he would have
erroneously dismissed this solution or attempted to regularize a problem that does not require
regularization. Previously, this point was unavailable to the decision maker because its quasi-
stability radius was too small. This demonstrates the importance of incorporating the effect of
varying degrees of uncertainty in the analysis.

In practice, the strictly efficient point x0 = (2, 1, 2) represents the number of tracks with dif-
ferent sizes that reaches a Pareto optimum of the problem (16). Based on this information, an
optimal solution of the target calculation of the local quasi-stability radius is given. This solution
gives a new strategy of truck allocation x̂ = (0, 4, 1) that preserves efficiency with respect to the
scaled and new objective functions. All the others possible perturbations in the objective functions
that preserve efficiency are given in Table 3. This latest information can be used to increase the
quasi-stability region (R̄q

s (C(δ), x0) = 0.0465 > 0.038). Besides, with general information on the
perturbations of the different objective functions (the uncertainty in the second objective is ten
times smaller than the uncertainty of the first objective for instance), a robust Pareto optimal truck
allocation x0 = (2, 4, 0), for which perturbation in one of the objective functions (the first one)
does not lead to new calculation or regularization, is obtained. This latest is helpful for the decision
maker in the sense that it gives a truck allocation that will be ‘immunized’ against uncertainty
without additional calculation. To conclude, regularization may help to understand the impact
of perturbation by making use of the local quasi-stability region and to work on the efficient
point to get preferences order on solutions. For instance, which truck sizes and how many of
them should be used to stay in the quasi-stability region? In the mean time, it helps to emphasize
or de-emphasize perturbations on some objective functions, which is another way to deal with
dimensional inconsistency and magnitude in the objective functions. Further issues and discussion
on dimensional inconsistency and the magnitude of parameters and objective functions, leading
to problems in scaling, are investigated in an upcoming article (Seck et al. 2012), which also
includes a numerical example.

6. Summary and conclusions

This article presented a systematic approach to analysing a linear, integer, multi-objective
optimization problem with uncertainty in the input data. The main contribution of the article
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is the unification of a series of highly theoretical articles and the definition of the local quasi-
stability radius. The importance of this local quasi-stability radius is emphasized when dealing
with uncertain multi-objective linear optimization problems. Also an approach is introduced to
compute the general local quasi-stability radius for simultaneous variations in all of the problem
data. Furthermore, the article synthesizes a structured analysis approach to the problem of uncer-
tain integer linear vector optimization problems, which was illustrated with case studies drawn
from the mining industry.

One of the novel features of this article is that the concept of solution stability is used to
address a number of important quantitative issues that decision makers must routinely face. These
include: how robust a solution is to problem uncertainty; what the limiting level of uncertainty is
to which the solution is robust; to which directions of variation in the input data is the solution
most sensitive; and so forth. This work highlights the importance of theoretical stability analysis
developments that have largely been available in Russian literature, and extends work dealing
with a number of practical implementation issues.

The present work has raised a number of issues that remain open, including: dealing with
scaling issues in the input data; emphasizing the uncertainty of some input data over others;
and the extension of stability ideas to quadratic, and possibly nonlinear, programming problems.
These issues are currently under active investigation.

Acknowledgements

The present work is supported by financial grants from Syncrude Research and Development, and the Natural Sciences
and Engineering Research Council of Canada.

References

Banke, J., et al., 2008. Multiobjective ptimization: Iterative and evolutionary approaches. Berlin: Springer-Verlag.
Emelichev, V.A. and Kuzmin, K.G., 2010. Stability radius of a vector integer linear programming problem: case of a

regular norm in the space of criteria. Cybernetics and Systems Analysis, 46 (1), 72–79.
Emelichev, V.A., et al., 2002. Stability and regularization of vector problems of integer linear programming. Journal of

Optimization, 51 (4), 645–676.
Emelichev, V.A. and Krichko, V.N., 1999. On stability of a Pareto optimum of a vector Boolean programming problem.

Discrete Mathematics and Applications, 9 (6), 607–613.
Emelichev, V.A. and Podkopaev, D.P., 1998. On a quantitative measure of stability for a vector problem in integer

programming. Computational Mathematics and Mathematical Physics, 38 (11), 1801–1805.
Jahn, J., 2004. Vector optimization, theory, applications and extensions. Berlin: Springer-Verlag.
Kozeratskaya, L., et al., 2004. Perturbed cones for analysis of uncertain multi-criteria optimization problems. Linear

Algebra and Its Applications, 378, 203–229.
Kozeratskaya, L.N., Lebedeva, T.T., and Sergienko, I.V., 1988. Questions of parameter analysis and stability investigation

of multicriteria problems of integer linear programming. Cybernetics: Translated from Kibernetika, 24 (3), 41–44.
Kozeratskaya, L.N., Lebedeva, T.T., and Sergienko, I.V., 1993. Regularization of integer vector optimization problems.

Cybernetics and Systems Analysis, 29 (3), 455–458.
Leontev, V.K. and Mamutov, K.K., 1988. Stability of solutions to linear Boolean programming problems. Computational

Mathematics and Mathematical Physics, 28 (5), 126–130.
Sawaragi,Y., Nakayama, H., and Tanino, T., 1985. Theory of multiobjective optimization. Orlando, FL: Orlando Academic

Press.
Seck, B., et al., 2012. Extended local stability radii for the post-optimality analysis of linear multi-objective integer

optimization problem. Submitted for publication.

Appendix A. Quasi-stability radius with respect to the objective

A generalization of the quasi-stability radius formula (7) is

Rq(C, x0) = min
x�=x0

Ax−b≤0

( ‖C(x − x0)‖p

‖x − x0‖q

)
. (A1)
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The ∞-norm (maximum) is used in the numerator of formula (7) to ensure agreement with the relation of order used
throughout the article. The type of efficiency used (i.e. Pareto efficiency) is based on the component-wise relation of
order, meaning that ‘x1 is better than x2’ (or x1 improves x2) is defined by cix1 ≥ cix2 for all i = 1, . . . , L. Choosing a
different relation of order yields a different type of efficiency and a different stability radius formula. Now, if instead of
using the component-wise relation of order, a relation of order in an average sense is defined, hence ‘x1 is better than x2’
if ‖Cx1‖1 ≥ ‖Cx2‖1, which is a different type of efficiency.

Using

‖C(x − x0)‖1 ≤ ‖C‖∞‖x − x0‖1, (A2)

which can be derived from the Hölder inequality for the case p = ∞, q = 1, a new formula for the quasi-stability radius is

R1(C, x0) = min
x�=x0

Ax−b≤0

( ‖C(x − x0)‖1

‖x − x0‖1

)

= min
x�=x0

Ax−b≤0

⎛
⎝∑L

i=1

∣∣∣∑n
j=1 cij(xj − x0j)

∣∣∣∑n
k=1 |xk − x0k |

⎞
⎠ . (A3)

The perturbations allowed by this stability radius are ‖C(δ) − C‖1 < R1. Using the definition of the 1-norm when dealing
with matrices,

max
j=1,...,n

L∑
i=1

|cij(δ) − cij| < δ.

Therefore, the entries of every column j = 1, . . . , n s.t.
∑L

i=1 |cij(δ) − cij| < Rq can be perturbed, meaning that the sum
of absolute values of the perturbations in one column must be less than the stability radius.

This shows that the formula (7) of the stability radius can be easily generalized to (A3). An even more general formula
would be (A1).

Appendix B. Quasi-stability radius (input matrix A and vector b)

The goal of this section is to provide the decision maker with stability information about the selected efficient solution
with respect to uncertainty in the input matrix A and input vector b. Here, the decision maker is primarily concerned
with knowing whether the efficient solution x0 from problem (1) remains efficient in the perturbed problem (B1). This
is resolved by the quasi-stability radius which quantifies the limiting level of perturbations such that the efficiency and
feasibility of the solution are preserved.

max
x

Cx

s.t. A(δ)x ≤ b(δ), (B1)

x ∈ Z
n.

Assume that only the entries of the matrix A are perturbed. The distance between problem (1) and the perturbed one (B1)
is max1≤i≤m ‖Ai(δ) − Ai‖p, where ‖ · ‖p stands for the p-norm on R

n.
The following theorem gives the formula for the local quasi-stability radius (see Definition 3.3) with respect to matrix

C for an efficient solution x0.

Theorem B.1 Let x0 be an efficient solution of problem (1) and 1 ≤ p ≤ +∞. Then, if only additive perturbations with
respect to the constraints matrix A are considered, the quasi-stability radius on x0 is given by

Rq(A, x0) = min{(Rq)1(A, x0), (R
q)2(A, x0)}, (B2)

where

(Rq)1(A, x0) = min
x�=x0

C(x−x0)≥0

max
1≤i≤m
Aix>bi

|Aix − bi|
‖x‖q

(B3)

and

(Rq)2(A, x0) = min
1≤i≤m

|Aix0 − bi|
‖x0‖q

. (B4)
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Sketch of proof In deriving the quasi-stability with respect to the input matrixA, perturbations toA can cause an infeasible
point x that is dominant to x0 to become feasible, or cause x0 to become infeasible.

Therefore, regarding the former case, the critical perturbations as given by ai(δ)x − bi = 0 are only calculated for
constraints i where aix − bi > 0 and for alternative solutions x that dominate x0, i.e. C(x − x0) ≥ 0. Following a similar
logic to that used in the previous section, the quasi-stability radius with respect to the matrix A while increasing the
feasible domain can be computed by following Equation (B3) (a similar proof for global quasi-stability can be found in
Leontev and Mamutov 1988 and Emelichev and Krichko 1999).

With regard to the latter case, the critical perturbations are given by ai(δ)x0 − bi = 0, and the stability radius equation
with respect to the matrix A while decreasing the feasible space is given by Equation (B4).

To guarantee that the efficiency and feasibility of x0 are preserved, the final stability radius equation with respect to
the matrix A is given by Equation (B2), where the perturbations to matrix A must satisfy the condition

‖ai(δ) − ai‖p < Rq(A, x0). (B5)

�

The line of reasoning behind deriving the quasi-stability radii with respect to the vector b, the matrix A and combinations
thereof is very similar. Therefore, the next theorems are presented without any proof or additional commentaries. Again,
similar proofs concerned with the global quasi-stability radius can be found in Leontev and Mamutov (1988) and Emelichev
and Krichko (1999).

Theorem B.2 Let x0 be an efficient solution of problem (1) and 1 ≤ p ≤ +∞. Then, if only additive perturbations with
respect to the constraints vector b are considered, the quasi-stability radius on x0 is given by

Rq(b, x0) = min{(Rq)1(b, x0), (R
q)2(b, x0)}, (B6)

where

(Rq)1(b, x0) = min
x�=x0

C(x−x0)≥0

max
1≤i≤m
Aix>bi

|Aix − bi| (B7)

and

(Rq)2(b, x0) = min
1≤i≤m

|Aix0 − bi|. (B8)

Theorem B.3 Let x0 be an efficient solution of problem (1) and 1 ≤ p ≤ +∞. Then, if additive perturbations with
respect to both the constraints matrix A and the constraints vector b are considered, the quasi-stability radius on x0 is
given by

Rq(A, b, x0) = min{(Rq)1(A, b, x0), (R
q)2(A, b, x0)}, (B9)

where

(Rq)1(A, b, x0) = min
x�=x0

C(x−x0)≥0

max
1≤i≤m
Aix>bi

|Aix − bi|
‖x‖q + 1

(B10)

and

(Rq)2(A, b, x0) = min
1≤i≤m

|Aix0 − bi|
‖x0‖q + 1

. (B11)

Remark B6 If some of the constraints are known with certainty, meaning that some of the rows of the matrix A – denoted
by Aj and the corresponding right-hand side entries of the vector b – denoted by bj contain no uncertainty, then the
quasi-stability radius with respect to the constraints have to be carefully modified. For instance, (B3) becomes

(Rq)1(A, x0) = min
x�=x0

C(x−x0)≥0
Ajx≤bj(fixed constraints)

max
1≤i≤m
Aix>bi

i �=j

|Aix − bi|
‖x‖q

. (B12)
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Appendix C. Quasi-stability radius (matrices C, A and the vector b)

In many common situations, model parameters can appear in both C and A. In these cases, the effects of perturbations
in the matrices cannot be analysed independently. The goal of this section is to provide the decision maker with stability
information about the selected efficient solution with respect to uncertainty in the input data triplet C, A and b. Here, the
primary concern is to know whether the efficient solution x0 from problem (1) is still efficient in the perturbed problem (3).
Again, this is resolved by the quasi-stability radius which quantifies the limiting level of perturbations such that efficiency
and feasibility of the solution are preserved.

Following the same logic as in the previous sections, the local quasi-stability radius can be computed through the
following theorem.

Theorem B.4 Let x0 be an efficient solution of problem (1) and 1 ≤ p ≤ +∞. Then, if additive perturbations with respect
to all of the objective matrix C, the constraints matrix A and the constraints vector b are considered, the quasi-stability
radius on x0 is given by

Rq(C, A, b, x0) = min{(Rq)2(A, b, x0), (R
q)1(C, A, b, x0), (R

q)(C, x0)}, (C1)

where

(Rq)1(C, A, b, x0) = min
x�=x0

max
1≤l≤L

cl(x−x0)≤0
1≤i≤m
Aix>bi

{ |Aix − bi|
‖x‖ + 1

,
|cl(x − x0)|
‖x − x0‖

}
. (C2)

Sketch of proof In deriving the quasi-stability with respect to the input data triplet C, A and b, the efficiency of x0 must
be preserved with respect to

• any alternative solution lying inside the feasible domain – Equation (7),
• any alternative solution lying outside the feasible domain – Equation (C1), and
• perturbations that cause infeasibility – Equation (C2) (it gives the slack of x0).

�

Remark B7 This quasi-stability radius formula (C1), also given in Emelichev and Krichko (1999), is based on the implicit
assumption that a model parameter can only appear in one of C, A or b; however, whenever C and A contain common
model parameters, Equation (7) must be replaced by Equation (C3), which allows simultaneous variations of C, A and b.
This modification yields a new formula, (C4), which represents the most general analytical expression of the quasi-stability
radius:

Rq
1(C, x0) =

⎧⎪⎨
⎪⎩

Rq(C, x0) if max
1≤i≤L

ci(x−x0)≤0

|ci(x − x0)|
‖x − x0‖q

> max
1≤i≤m

|Aix − bi|
‖x‖q + 1

0 elsewhere.

(C3)

Rq(C, A, b, x0) = min{(Rq)2(A, b, x0), (R
q)1(C, A, b, x0), Rq

1(C, x0)}. (C4)


